10. Regression with Time Series Data

Definition: A time series {x;} Is a collection of random
variables indexed by time.

Rks:

@® We shall deal only with discrete time series, i.e. wheret € N
or perhaps t € Z. Although samples will involve only a finite
number of observations, it is useful to think of them as being
part of an infinite (or doubly infinite) collection.

@® \We shall not deal with continuous time models, where
t e [0,T]

@® A time series (TS) is also called a stochastic process.



@® With random sampling, it is useful to think of our sample as
a sequence of draws from an underlying distribution.

@® With time series, it is useful to think of an entire sample as
being drawn at once as a point o € Q. We sometimes write
the collection of random variables as {xi(®w)}. Fixing o, and
letting t vary we get a realized trajectory/time
path/history/ensemble.

@ Probability statements for TS describe what would happen
across different draws of w. So one of the questions that has
to be addressed is whether we can learn ensemble averages
can be estimated from a single realization of a trajectory.



Application

@® Distributed Lag Models
Yt :,Bo+502t+512t_1+522t_2+ut t = 1,---,n

where {u¢} Is an 1.1.d sequence. Notice that here the effect of
Z: on the dependent variable does not all occur in period t,
unless 61 = 62 = 0 (a static model).

@ Suppose z is increased by one unit at time t, but its values in
all other periods are held constant. In period t, we get the
"Impact" response 6o. But Y1 IS expected to increase by 61,
and yi2 by 62. Values of y,s for s > 2 are unaffected.

@ If zis increased permanently by one unit at time t, we get an
Initial response of 6o and a "long run" multiplier of
00 +01+ 02



Lag operator

When dealing with (discrete) time series, it is useful to
Introduce the Lag (or Backshift) operator

L(Zt) = i1

@ Strictly speaking, the lag operator maps an entire time series
Into an entire time series, but it’s convenient to represent it
by what it does to a typical component.

We often drop the brackets and write just Lz;

The lag operator is linear: L(@1z1t + a222t) = a1Z1t-1 + a2Z21-1

Define L?zy = 742, L'z¢ = zy1, LY2¢ = z¢ and in general
L"z¢ = zi_n, SO We can make polynomials in the lag operator.



@® With the lag operator, we can write the distributed lag model
as

Vit = Bo +0(L)zt +uy where (L) = SoLY +5:L1 + 5,L2
The impact multiplier is 6o and the long run multiplier is 6(1)

@® Notice that for observationt = 1, we need the observations
for the explanatory variable at timet = Oandt = -1. We’ll
assume that these two presample observations are available.

@ In practice, introducing dynamics, such as lags of z; into the
regression may force use to "drop" the first two observations
from the sample.



Finite Sample Properties of OLS under Classical
Assumptions

® If we don’t have a random sample, because the explanatory
variables are drawn from a time series, it is still possible to
construct a finite sample theory for the OLS estimators that
may be applicable. In matrix terms, the assumptions are
exactly the same as in the CLM, but now we have to be a bit
more careful to verify them.

® Sl.y=Xp+u (e Vyi=Xf+Uu Vi)
m X could contain lags of the variables z1¢, z2, etc

@® 52: X has full column rank
Under S1-S2, the OLS estimator is unique and given by
B=XX)"X'y=p+Lu



@® S3:EWUX) =0 (e E(Uyxi,X2,--Xn) =0 Vi)

m T E(u¢[xt) = 0 we say x; Is contemporaneously
exogenous. This is enough for a large sample theory, but
not to obtain finite sample results such as no bias.

m E(uiX1,X2,---Xn) = 0 Vtsays the regressors are strictly
exogenous

Under S1-S3
E(BIX) = E(B+LulX) = B+ LE(uIX) =

= E(B) = E[EBX) | = B



® S4: E(uu'IX) = o,
m S4a: E(UZ|X1,X2,--Xn) = 02 Vit
m S4b: E(usui|X1,X2,---Xp) =0 Vs #t
Under S1-S4
V(BIX) = LVUIX)L' = a2(X'X)™1

@® Under S1-S4, B is the Gauss-Markov estimator, i.e. it is
BLUE.



@® S5 ulX~N
Under S1-S5
BIX~N(B,02(X'X))

@® So all the test statistics derived under S1-S5 for random
samples, also hold in a time series setting.

@ Under S1-S5, B achieves the Cramer-Rao lower bound, and
so it 1S the MVVUE, 1.e. It has minimum variance In the class
of all unbiased estimators



So what’s the big deal about time series?

® With random samples, i.e. {(Xt, Uy)} an i.1.d. sequence,
E(uxt) =0  EU|X) =0
E(ulx;) = 02 © EWU?|X) = ¢2l,

so it was enough to verify the left-hand-side conditions
which involved only disturbances and regressors for each
observation. With time series (dependent sample), we have
to verify the right-hand-side equalities directly.
@® Why would LHS equalities be OK but not RHS?
m X could respond to y:-1 (or be yi1), then E(u¢/X¢11) # 0
m disturbances could be serially correlated (a violation of
S4b): E(usuglX) # 0 Vs # t



Some Functional Form issues

With time series data, we may want coefficients to vary
over time.

Yt = X¢ft + Uy

1. Structural Breaks

{,B* te T

Pt =
teg T

where T* denotes a subsample. For example, T* could be
the observations

@® Dbefore an event occured (say the introduction of same change
In regime—NAFTA, Sarbanes-Oxley)

@ during a specific episode (a war, or a monetary targeting
regime, an "event" such as a corporate name change).



2. Seasonals
,Bt = ,B + Dt5
where

DtZ[ Dit Do -+ Dso1y ]

and D;: = 1 if observation t belongs to season |, 0
otherwise.

@® Modelling returns, we often allow the intercept to vary with
the season. For example, in monthly returns, allow for a
"January effect".

@® Trading volume has a time-of-day seasonal. It’s highest at
the open and just before the close.



Time trends
Linear

YVt = ﬂo+ﬂ1t+ut E(yt) = ﬁo-l—ﬁlt
or log-linear

Iny: = Bo+ Bit+ur .. E(yt) oc exp(fit)
Rk: We can also extend to higher order time polynomials
@® Should you include time trends as regressors? Consider
Vi = XB1 + Pot + Uy
@® From the FW theorem, we know that if we include t as a

regressor, only the detrended part of X is used to estimate 51

@ Because many time series display a trend, t serves as a proxy
for many left out variables. Not including a time trend makes

B, highly susceptible to the usual left-out variable bias.



Goodness of fit with time series data

@ If y displays a trend, then it’s not unusual to get very high
values for R? (say . 98) whereas in cross-section data, a value
of R> = 0.2. Are time-series regressions more informative?

@® A suggestion: Recall
/
R?% = w where A = | —n~1u/’
y' Ay

With time series data, it makes some sense to report

~2 "N

S

y'Ay y'Ay

where A projects onto Sp+<i,t,seasonals}. This is just the
usual R? from the regression of Ay on (1 X)



More on Seasonality

® We know from the FW theorem, that if we run the regression
Vi = XB+ Dso + Uy

where Dg are seasonal dummies, that it’s the same as running
deviations from seasonal means of y on deviations from
seasonal means of the variables in X.

@ Statistical agencies often report deseasonalized data. When
We run regressions using such data, it’s almost as if they have
taken out the seasonal means.



@® However, the agencies’ procedures are a bit more
complicated because

m they allow the seasonal component to evolve over time
(it’s not a constant). This means that the data are revised
as seasonal factors are estimated more accurately with
time.

m they adjust the data for outliers as well (possibly due to
events such as strikes or that are weather related)

@ The adjustments are mechanical and done outside a model.
This has some advantages, but in practice you should always
deseasonalize yourself, whenever possible. Standard
approaches often take out too much variation in the data.



