
10. Regression with Time Series Data
Definition: A time series xt is a collection of random
variables indexed by time.

Rks:
 We shall deal only with discrete time series, i.e. where t ∈ ℕ

or perhaps t ∈ ℤ. Although samples will involve only a finite
number of observations, it is useful to think of them as being
part of an infinite (or doubly infinite) collection.

 We shall not deal with continuous time models, where
t ∈ 0,T

 A time series (TS) is also called a stochastic process.



 With random sampling, it is useful to think of our sample as
a sequence of draws from an underlying distribution.

 With time series, it is useful to think of an entire sample as
being drawn at once as a point  ∈ . We sometimes write
the collection of random variables as xt. Fixing , and
letting t vary we get a realized trajectory/time
path/history/ensemble.

 Probability statements for TS describe what would happen
across different draws of . So one of the questions that has
to be addressed is whether we can learn ensemble averages
can be estimated from a single realization of a trajectory.



Application

 Distributed Lag Models
yt  0  0zt  1zt−1  2zt−2  ut t  1,,n

where ut is an i.i.d sequence. Notice that here the effect of
zt on the dependent variable does not all occur in period t,
unless 1  2  0 (a static model).

 Suppose z is increased by one unit at time t, but its values in
all other periods are held constant. In period t, we get the
"impact" response 0. But yt1 is expected to increase by 1,
and yt2 by 2. Values of yts for s ≥ 2 are unaffected.

 If z is increased permanently by one unit at time t, we get an
initial response of 0 and a "long run" multiplier of
0  1  2



Lag operator

When dealing with (discrete) time series, it is useful to
introduce the Lag (or Backshift) operator

Lzt  zt−1

 Strictly speaking, the lag operator maps an entire time series
into an entire time series, but it’s convenient to represent it
by what it does to a typical component.

 We often drop the brackets and write just Lzt

 The lag operator is linear: La1z1t  a2z2t  a1z1t−1  a2z2t−1

 Define L2zt  zt−2, L−1zt  zt1, L0zt  zt and in general
Lnzt  zt−n, so we can make polynomials in the lag operator.



 With the lag operator, we can write the distributed lag model
as

yt  0  Lzt  ut where L  0L0  1L1  2L2

The impact multiplier is 0 and the long run multiplier is 1

 Notice that for observation t  1, we need the observations
for the explanatory variable at time t  0 and t  −1. We’ll
assume that these two presample observations are available.

 In practice, introducing dynamics, such as lags of zt into the
regression may force use to "drop" the first two observations
from the sample.



Finite Sample Properties of OLS under Classical
Assumptions

 If we don’t have a random sample, because the explanatory
variables are drawn from a time series, it is still possible to
construct a finite sample theory for the OLS estimators that
may be applicable. In matrix terms, the assumptions are
exactly the same as in the CLM, but now we have to be a bit
more careful to verify them.

 S1: y  X  u  yt  xt  ut ∀t
 xt could contain lags of the variables z1t, z2t, etc

 S2: X has full column rank
Under S1-S2, the OLS estimator is unique and given by


  X ′X−1X ′y    Lu



 S3: Eu|X  0  Eut|x1,x2,xn  0 ∀t
 If Eut|xt  0 we say xt is contemporaneously

exogenous. This is enough for a large sample theory, but
not to obtain finite sample results such as no bias.

 Eut|x1,x2,xn  0 ∀t says the regressors are strictly
exogenous

Under S1-S3
E

|X  E  Lu|X    LEu|X  

 E

  E E


|X  



 S4: Euu ′|X  2In
 S4a: Eut

2|x1,x2,xn  2 ∀t
 S4b: Eusut|x1,x2,xn  0 ∀s ≠ t

Under S1-S4
V

|X  LVu|XL ′  2X ′X−1

 Under S1-S4,

 is the Gauss-Markov estimator, i.e. it is

BLUE.



 S5: u|X~N

Under S1-S5

 |X~N,2X ′X−1

 So all the test statistics derived under S1-S5 for random
samples, also hold in a time series setting.

 Under S1-S5,

 achieves the Cramer-Rao lower bound, and

so it is the MVUE, i.e. it has minimum variance in the class
of all unbiased estimators



So what’s the big deal about time series?

 With random samples, i.e. xt,ut an i.i.d. sequence,
Eut|xt  0  Eu|X  0
Eut

2|xt  2  Eu2|X  2In

so it was enough to verify the left-hand-side conditions
which involved only disturbances and regressors for each
observation. With time series (dependent sample), we have
to verify the right-hand-side equalities directly.

 Why would LHS equalities be OK but not RHS?
 xt could respond to yt−1 (or be yt−1, then Eut|xt1 ≠ 0
 disturbances could be serially correlated (a violation of

S4b): Eusut|X ≠ 0 ∀s ≠ t



Some Functional Form issues
With time series data, we may want coefficients to vary
over time.

yt  xt t  ut

1. Structural Breaks

 t   ∗ t ∈ T∗

 t ∉ T∗

where T∗ denotes a subsample. For example, T∗ could be
the observations
 before an event occured (say the introduction of same change

in regime–NAFTA, Sarbanes-Oxley)
 during a specific episode (a war, or a monetary targeting

regime, an "event" such as a corporate name change).



2. Seasonals
 t    Dt

where

Dt  D1t D2t  DS−1,t

and Djt  1 if observation t belongs to season j, 0
otherwise.
 Modelling returns, we often allow the intercept to vary with

the season. For example, in monthly returns, allow for a
"January effect".

 Trading volume has a time-of-day seasonal. It’s highest at
the open and just before the close.



Time trends
Linear

yt  0  1t  ut ∴ Eyt  0  1t
or log-linear

lnyt  0  1t  ut ∴ Eyt  exp1t
Rk: We can also extend to higher order time polynomials
 Should you include time trends as regressors? Consider

yt  X1  2t  ut

 From the FW theorem, we know that if we include t as a
regressor, only the detrended part of X is used to estimate 1

 Because many time series display a trend, t serves as a proxy
for many left out variables. Not including a time trend makes
1 highly susceptible to the usual left-out variable bias.



Goodness of fit with time series data

 If y displays a trend, then it’s not unusual to get very high
values for R2 (say .98) whereas in cross-section data, a value
of R2  0.2. Are time-series regressions more informative?

 A suggestion: Recall

R2 
y ′Ay
y ′Ay

where A  I − n−1 ′

With time series data, it makes some sense to report

R
2

y ′Ay
y ′Ay

 1 − SSR
y ′Ay

where A projects onto Sp, t, seasonals. This is just the
usual R2 from the regression of Ay on X



More on Seasonality

 We know from the FW theorem, that if we run the regression
yt  X  DS  ut

where DS are seasonal dummies, that it’s the same as running
deviations from seasonal means of y on deviations from
seasonal means of the variables in X.

 Statistical agencies often report deseasonalized data. When
we run regressions using such data, it’s almost as if they have
taken out the seasonal means.



 However, the agencies’ procedures are a bit more
complicated because
 they allow the seasonal component to evolve over time

(it’s not a constant). This means that the data are revised
as seasonal factors are estimated more accurately with
time.

 they adjust the data for outliers as well (possibly due to
events such as strikes or that are weather related)

 The adjustments are mechanical and done outside a model.
This has some advantages, but in practice you should always
deseasonalize yourself, whenever possible. Standard
approaches often take out too much variation in the data.


